Measuring Labor Demand and Supply Shocks during COVID-19

Pedro Brinca Nova SBE Joao B. Duarte Nova SBE Miguel Faria-e-Castro FRB St. Louis

SEACEN

International Macroeconomic Analysis in a Post-COVID-19 World June 8, 2021

The views expressed on this presentation do not necessarily reflect the positions of the Federal Reserve Bank of St. Louis or the Federal Reserve System.

Introduction

- 1. Supply \leftarrow Workers behavior
 - Increase in health risk
 - Policy
 - Containment and mitigation measures (lockdowns)
 - Fiscal: e.g. CARES act
 - Monetary
- 2. Demand ← Firms behavior
 - Demand shortages (GLSW 2020; Baqaee and Farhi 2020)
 - Increase in Health risk
 - Complementarities across sectors (input-output preferences)
 - Aggregate demand
 - Supply chain disruptions
 - Policy (monetary & fiscal policy)

- 1. Supply \leftarrow Workers behavior
 - Increase in health risk
 - Policy
 - Containment and mitigation measures (lockdowns)
 - Fiscal: e.g. CARES act
 - Monetary
- 2. Demand ← Firms behavior
 - Demand shortages (GLSW 2020; Baqaee and Farhi 2020)
 - Increase in Health risk
 - Complementarities across sectors (input-output preferences)
 - Aggregate demand
 - Supply chain disruptions
 - Policy (monetary & fiscal policy)

- 1. Supply \leftarrow Workers behavior
 - Increase in health risk
 - Policy
 - Containment and mitigation measures (lockdowns)
 - Fiscal: e.g. CARES act
 - Monetary
- 2. Demand ← Firms behavior
 - Demand shortages (GLSW 2020; Baqaee and Farhi 2020)
 - Increase in Health risk
 - Complementarities across sectors (input-output preferences)
 - Aggregate demand
 - Supply chain disruptions
 - Policy (monetary & fiscal policy)

- 1. Supply \leftarrow Workers behavior
 - Increase in health risk
 - Policy
 - Containment and mitigation measures (lockdowns)
 - Fiscal: e.g. CARES act
 - Monetary
- 2. Demand ← Firms behavior
 - Demand shortages (GLSW 2020; Baqaee and Farhi 2020)
 - Increase in Health risk
 - Complementarities across sectors (input-output preferences)
 - Aggregate demand
 - Supply chain disruptions
 - Policy (monetary & fiscal policy)

- 1. Supply \leftarrow Workers behavior
 - Increase in health risk
 - Policy
 - Containment and mitigation measures (lockdowns)
 - Fiscal: e.g. CARES act
 - Monetary
- 2. Demand ← Firms behavior
 - Demand shortages (GLSW 2020; Baqaee and Farhi 2020)
 - Increase in Health risk
 - Complementarities across sectors (input-output preferences)
 - Aggregate demand
 - Supply chain disruptions
 - Policy (monetary & fiscal policy)

Definition

Labor *supply shocks* are defined as unforeseen changes in *workers* willingness to work given the observed wage.

Labor **demand shocks** are defined as unforeseen changes in **employers** willingness to hire given the observed wage.

Remarks

- Labor supply and demand shocks here are interpreted as shifts in the supply and demand curve, respectively.
- They are structural insofar as disentangling workers vs. employers behavior goes. They are not fundamental shocks to preferences, market structure or technology.
- They are best described as reduced form shocks that net out how fundamental shocks shift the demand or supply curves.

Definition

Labor *supply shocks* are defined as unforeseen changes in *workers* willingness to work given the observed wage.

Labor **demand shocks** are defined as unforeseen changes in **employers** willingness to hire given the observed wage.

Remarks

- Labor supply and demand shocks here are interpreted as shifts in the supply and demand curve, respectively.
- They are structural insofar as disentangling workers vs. employers behavior goes. They are not fundamental shocks to preferences, market structure or technology.
- They are best described as reduced form shocks that net out how fundamental shocks shift the demand or supply curves.

Definition

Labor *supply shocks* are defined as unforeseen changes in *workers* willingness to work given the observed wage.

Labor **demand shocks** are defined as unforeseen changes in **employers** willingness to hire given the observed wage.

Remarks

- Labor supply and demand shocks here are interpreted as shifts in the supply and demand curve, respectively.
- They are structural insofar as disentangling workers vs. employers behavior goes. They are not fundamental shocks to preferences, market structure or technology.
- They are best described as reduced form shocks that net out how fundamental shocks shift the demand or supply curves.

This paper

- 1. How much of the drop in hours worked is explained by shifts in labor supply and demand?
- 2. How does that vary across sectors?

1. The need of useful moments and parameters to calibrate models

- How large were the shifts in labor supply and demand during COVID-19?
- We provide sectoral labor elasticities (multisector models are key to model COVID-19)
- 2. Policy guidance
 - Labor supply shocks more closely related w/ state of public health
 - Persistence linked to that of public health crisis
 - Policy recommendation: Social insurance for workers (preferably preserving job matches)
 - Labor demand shocks more closely related w/ state of the economy (labor earnings collapsing)
 - Potentially more persistent (job destruction, business exit)
 - Policy recommendation: Targeted fiscal and credit policies (especially in non-lockdown sectors)

- 1. The need of useful moments and parameters to calibrate models
 - How large were the shifts in labor supply and demand during COVID-19?
 - We provide sectoral labor elasticities (multisector models are key to model COVID-19)
- 2. Policy guidance
 - Labor supply shocks more closely related w/ state of public health
 - Persistence linked to that of public health crisis
 - Policy recommendation: Social insurance for workers (preferably preserving job matches)
 - Labor demand shocks more closely related w/ state of the economy (labor earnings collapsing)
 - Potentially more persistent (job destruction, business exit)
 - Policy recommendation: Targeted fiscal and credit policies (especially in non-lockdown sectors)

- 1. The need of useful moments and parameters to calibrate models
 - How large were the shifts in labor supply and demand during COVID-19?
 - We provide sectoral labor elasticities (multisector models are key to model COVID-19)
- 2. Policy guidance
 - Labor supply shocks more closely related w/ state of public health
 - Persistence linked to that of public health crisis
 - Policy recommendation: Social insurance for workers (preferably preserving job matches)
 - Labor demand shocks more closely related w/ state of the economy (labor earnings collapsing)
 - Potentially more persistent (job destruction, business exit)
 - Policy recommendation: Targeted fiscal and credit policies (especially in non-lockdown sectors)

- 1. The need of useful moments and parameters to calibrate models
 - How large were the shifts in labor supply and demand during COVID-19?
 - We provide sectoral labor elasticities (multisector models are key to model COVID-19)
- 2. Policy guidance
 - Labor supply shocks more closely related w/ state of public health
 - Persistence linked to that of public health crisis
 - Policy recommendation: Social insurance for workers (preferably preserving job matches)
 - Labor demand shocks more closely related w/ state of the economy (labor earnings collapsing)
 - Potentially more persistent (job destruction, business exit)
 - Policy recommendation: Targeted fiscal and credit policies (especially in non-lockdown sectors)

- 1. The need of useful moments and parameters to calibrate models
 - How large were the shifts in labor supply and demand during COVID-19?
 - We provide sectoral labor elasticities (multisector models are key to model COVID-19)
- 2. Policy guidance
 - Labor supply shocks more closely related w/ state of public health
 - Persistence linked to that of public health crisis
 - Policy recommendation: Social insurance for workers (preferably preserving job matches)
 - Labor demand shocks more closely related w/ state of the economy (labor earnings collapsing)
 - Potentially more persistent (job destruction, business exit)
 - Policy recommendation: Targeted fiscal and credit policies (especially in non-lockdown sectors)

- 1. The need of useful moments and parameters to calibrate models
 - How large were the shifts in labor supply and demand during COVID-19?
 - We provide sectoral labor elasticities (multisector models are key to model COVID-19)
- 2. Policy guidance
 - Labor supply shocks more closely related w/ state of public health
 - Persistence linked to that of public health crisis
 - Policy recommendation: Social insurance for workers (preferably preserving job matches)
 - Labor demand shocks more closely related w/ state of the economy (labor earnings collapsing)
 - Potentially more persistent (job destruction, business exit)
 - Policy recommendation: Targeted fiscal and credit policies (especially in non-lockdown sectors)

This paper

Approach:

- Using monthly hours and real wage per hour (CES from BLS)
- Estimate Bayesian SVAR (Δh_t , Δw_t) with informative prior (Baumeister & Hamilton, 2015, 2018, 2019)
 - Accounts for estimation uncertainty + uncertainty about the underlying structure of the economy
 - Prior beliefs are explicitly acknowledged: labor supply & demand elasticity estimates from literature

- Using monthly hours and real wage per hour (CES from BLS)
- Estimate Bayesian SVAR $(\Delta h_t, \Delta w_t)$ with informative prior (Baumeister & Hamilton, 2015, 2018, 2019)
 - Accounts for estimation uncertainty + uncertainty about the underlying structure of the economy
 - Prior beliefs are explicitly acknowledged: labor supply & demand elasticity estimates from literature

- Using monthly hours and real wage per hour (CES from BLS)
- Estimate Bayesian SVAR $(\Delta h_t, \Delta w_t)$ with informative prior (Baumeister & Hamilton, 2015, 2018, 2019)
 - Accounts for estimation uncertainty + uncertainty about the underlying structure of the economy
 - Prior beliefs are explicitly acknowledged: labor supply & demand elasticity estimates from literature

- Using monthly hours and real wage per hour (CES from BLS)
- Estimate Bayesian SVAR (Δh_t , Δw_t) with informative prior (Baumeister & Hamilton, 2015, 2018, 2019)
 - Accounts for estimation uncertainty + uncertainty about the underlying structure of the economy
 - Prior beliefs are explicitly acknowledged: labor supply & demand elasticity estimates from literature

- Identification of relative size of demand and supply shocks driven by:
 - Changes in hours and wages per hour
 - Ratio of labor demand and supply elasticities (prior: ratio=1)
- Analysis by
 - 1. Sector (NAICS-2 and -3)
 - 2. Occupational category (production vs. non-production)

- Identification of relative size of demand and supply shocks driven by:
 - Changes in hours and wages per hour
 - Ratio of labor demand and supply elasticities (prior: ratio=1)
- Analysis by
 - 1. Sector (NAICS-2 and -3)
 - 2. Occupational category (production vs. non-production)

- Identification of relative size of demand and supply shocks driven by:
 - Changes in hours and wages per hour
 - Ratio of labor demand and supply elasticities (prior: ratio=1)
- Analysis by
 - 1. Sector (NAICS-2 and -3)
 - 2. Occupational category (production vs. non-production)

- <u>Supply</u> accounts for 2/3 of 16.24 pp drop in the growth rate of hours worked in April 2020
- Large negative demand & supply shocks in March, April
- Huge heterogeneity across sectors:
 - 1. Leisure and Hospitality: -63.18 pp in April, 63% supply
 - 2. Utilities, Information, Financial Activities least affected
 - 3. Positive demand shocks are observed in March for many sectors, but not in April
- Validation:
 - 1. Supply shocks correlate strongly with measures of telework
 - 2. No correlation for "normal" months
 - 3. Low correlation w/ demand shocks

- <u>Supply</u> accounts for 2/3 of 16.24 pp drop in the growth rate of hours worked in April 2020
- Large negative demand & supply shocks in March, April
- Huge heterogeneity across sectors:
 - 1. Leisure and Hospitality: -63.18 pp in April, 63% supply
 - 2. Utilities, Information, Financial Activities least affected
 - 3. Positive demand shocks are observed in March for many sectors, but not in April
- Validation:
 - 1. Supply shocks correlate strongly with measures of telework
 - 2. No correlation for "normal" months
 - 3. Low correlation w/ demand shocks

- <u>Supply</u> accounts for 2/3 of 16.24 pp drop in the growth rate of hours worked in April 2020
- Large negative demand & supply shocks in March, April
- Huge heterogeneity across sectors:
 - 1. Leisure and Hospitality: -63.18 pp in April, 63% supply
 - 2. Utilities, Information, Financial Activities least affected
 - 3. Positive demand shocks are observed in March for many sectors, but not in April
- Validation:
 - 1. Supply shocks correlate strongly with measures of telework
 - 2. No correlation for "normal" months
 - 3. Low correlation w/ demand shocks

- <u>Supply</u> accounts for 2/3 of 16.24 pp drop in the growth rate of hours worked in April 2020
- Large negative demand & supply shocks in March, April
- Huge heterogeneity across sectors:
 - 1. Leisure and Hospitality: -63.18 pp in April, 63% supply
 - 2. Utilities, Information, Financial Activities least affected
 - 3. Positive demand shocks are observed in March for many sectors, but not in April
- Validation:
 - 1. Supply shocks correlate strongly with measures of telework
 - 2. No correlation for "normal" months
 - 3. Low correlation w/ demand shocks

 COVID shock in multi-sector economies Bodenstein, Corsetti, & Guerrieri (2020); Barrot, Grassi, & Sauvagnat (2020); Faria-e-Castro (2020); ...

 Effects of voluntary & mandated confinement Eichenbaum, Rebelo & Trabandt (2020); Kaplan, Moll, and Violante (2020); ...

3. Supply vs. demand shocks

Guerrieri, Lorenzoni, Straub, & Werning (2020); Baqaee & Fahri (2020); del Rio-Chanona et al. (2020); ...

- 1. Econometric model
- 2. Data
- 3. Results: estimation & decomposition
- 4. Validation
- 5. Conclusion

Model

Econometric Model

Framework based on Baumeister & Hamilton (2015, ECTA)

- Sector $l \in L$, month $t \in T$
- Growth rate of wages Δw_t^l , hours Δh_t^l
- Observables

$$\boldsymbol{y}_t^l = (\Delta w_t^l, \Delta h_t^l)$$

SVAR for sector /

$$\boldsymbol{A}' \boldsymbol{y}_t' = \boldsymbol{B}_0' + \boldsymbol{B}'(L) \boldsymbol{y}_{t-1}' + \varepsilon_t'$$

Structural demand and supply shocks

$$arepsilon_t^{\prime} = (arepsilon_{d,t}^{\prime}, arepsilon_{s,t}^{\prime}) \sim \mathcal{N}(oldsymbol{0}, oldsymbol{D})$$

Assume that

$$\mathbf{A}' = \begin{bmatrix} -\beta' & 1\\ -\alpha' & 1 \end{bmatrix}$$
$$\alpha' \ge 0$$
$$\beta' \le 0$$

- $\alpha_I \ge 0$: supply slopes up
- $\beta_I \leq 0$: demand slopes down
- Prior beliefs over $\{\alpha^{l},\beta^{l}\}_{l\in L}$ incorporate these sign restrictions

Identification: Example

Write the SVAR as supply/demand system

$$\begin{split} \Delta h_t^l &= b_{20}^{s,l} + \alpha^l \Delta w_t^l + \sum_{i=1}^m b_{21}^{i,s,l} \Delta w_{t-i}^l + \sum_{i=1}^m b_{22}^{i,s,l} \Delta h_{t-i}^l + \varepsilon_{s,t}^l \\ \Delta h_t^l &= b_{10}^{d,l} + \beta^l \Delta w_t^l + \sum_{i=1}^m b_{11}^{i,d,l} \Delta w_{t-i}^l + \sum_{i=1}^m b_{12}^{i,d,l} \Delta h_{t-i}^l + \varepsilon_{d,t}^l \end{split}$$

Assume (i) no intercept, (ii) no lags. That yields

$$\begin{split} \Delta h_t^l &= \left(\frac{1}{1 - \left(\frac{\alpha^l}{\beta^l}\right)^{-1}}\right) \varepsilon_{d,t}^l + \left(\frac{1}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l \\ \Delta w_t^l &= \left(\frac{1/\beta^l}{\frac{\alpha^l}{\beta^l} - 1}\right) \varepsilon_{d,t}^l + \left(\frac{1/\beta^l}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l \end{split}$$

Identification: Example

Write the SVAR as supply/demand system

$$\begin{split} \Delta h_t^l &= b_{20}^{s,l} + \alpha^l \Delta w_t^l + \sum_{i=1}^m b_{21}^{i,s,l} \Delta w_{t-i}^l + \sum_{i=1}^m b_{22}^{i,s,l} \Delta h_{t-i}^l + \varepsilon_{s,t}^l \\ \Delta h_t^l &= b_{10}^{d,l} + \beta^l \Delta w_t^l + \sum_{i=1}^m b_{11}^{i,d,l} \Delta w_{t-i}^l + \sum_{i=1}^m b_{12}^{i,d,l} \Delta h_{t-i}^l + \varepsilon_{d,t}^l \end{split}$$

- Assume (i) no intercept, (ii) no lags. That yields

$$\begin{split} \Delta h_t^l &= \left(\frac{1}{1 - \left(\frac{\alpha^l}{\beta^l}\right)^{-1}}\right) \varepsilon_{d,t}^l + \left(\frac{1}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l \\ \Delta w_t^l &= \left(\frac{1/\beta^l}{\frac{\alpha^l}{\beta^l} - 1}\right) \varepsilon_{d,t}^l + \left(\frac{1/\beta^l}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l \end{split}$$

Identification: Example

Write the SVAR as supply/demand system

$$\begin{split} \Delta h_t^l &= b_{20}^{s,l} + \alpha^l \Delta w_t^l + \sum_{i=1}^m b_{21}^{i,s,l} \Delta w_{t-i}^l + \sum_{i=1}^m b_{22}^{i,s,l} \Delta h_{t-i}^l + \varepsilon_{s,t}^l \\ \Delta h_t^l &= b_{10}^{d,l} + \beta^l \Delta w_t^l + \sum_{i=1}^m b_{11}^{i,d,l} \Delta w_{t-i}^l + \sum_{i=1}^m b_{12}^{i,d,l} \Delta h_{t-i}^l + \varepsilon_{d,t}^l \end{split}$$

- Assume (i) no intercept, (ii) no lags. That yields

$$\begin{split} \Delta h_t^l &= \left(\frac{1}{1 - \left(\frac{\alpha^l}{\beta^l}\right)^{-1}}\right) \varepsilon_{d,t}^l + \left(\frac{1}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l \\ \Delta w_t^l &= \left(\frac{1/\beta^l}{\frac{\alpha^l}{\beta^l} - 1}\right) \varepsilon_{d,t}^l + \left(\frac{1/\beta^l}{1 - \frac{\alpha^l}{\beta^l}}\right) \varepsilon_{s,t}^l \end{split}$$
Identification: Example

Assume (i) no intercept, (ii) no lags. That yields

$$\begin{split} \Delta h_t' &= \left(\frac{1}{1 - \left(\frac{\alpha'}{\beta'}\right)^{-1}}\right) \varepsilon_{d,t}' + \left(\frac{1}{1 - \frac{\alpha'}{\beta'}}\right) \varepsilon_{s,t}' \\ \Delta w_t' &= \left(\frac{1/\beta'}{\frac{\alpha'}{\beta'} - 1}\right) \varepsilon_{d,t}' + \left(\frac{1/\beta'}{1 - \frac{\alpha'}{\beta'}}\right) \varepsilon_{s,t}' \end{split}$$

• Assuming $\beta' < 0, \alpha' > 0$, we get:

$$\begin{split} &1. \quad \frac{\partial \Delta h'_t}{\partial \varepsilon'_{d,t}} > 0 \text{ and } \frac{\partial \Delta h'_t}{\partial \varepsilon'_{s,t}} > 0 \\ &2. \quad \frac{\partial \Delta w'_t}{\partial \varepsilon'_{d,t}} > 0 \text{ and } \frac{\partial \Delta w'_t}{\partial \varepsilon'_{s,t}} < 0 \end{split}$$

Graphical Illustration

Identification: Example

Assume (i) no intercept, (ii) no lags. That yields

$$\Delta h_t^{\prime} = \underbrace{\left(\frac{1}{1 - \left(\frac{\alpha^{\prime}}{\beta^{\prime}}\right)^{-1}}\right)}_{> 0} \varepsilon_{d,t}^{\prime} + \left(\frac{1}{1 - \frac{\alpha^{\prime}}{\beta^{\prime}}}\right) \varepsilon_{s,t}^{\prime}$$
$$\Delta w_t^{\prime} = \underbrace{\left(\frac{1/\beta^{\prime}}{\frac{\alpha^{\prime}}{\beta^{\prime}} - 1}\right)}_{> 0} \varepsilon_{d,t}^{\prime} + \left(\frac{1/\beta^{\prime}}{1 - \frac{\alpha^{\prime}}{\beta^{\prime}}}\right) \varepsilon_{s,t}^{\prime}$$

• Assuming $\beta' < 0, \alpha' > 0$, we get:

$$\begin{split} & 1. \quad \frac{\partial \Delta h'_t}{\partial \varepsilon'_{d,t}} > 0 \text{ and } \frac{\partial \Delta h'_t}{\partial \varepsilon'_{s,t}} > 0 \\ & 2. \quad \frac{\partial \Delta w'_t}{\partial \varepsilon'_{d,t}} > 0 \text{ and } \frac{\partial \Delta w'_t}{\partial \varepsilon'_{s,t}} < 0 \end{split}$$

Graphical Illustration

Identification: Example

Assume (i) no intercept, (ii) no lags. That yields

$$\Delta h'_{t} = \left(\frac{1}{1 - \left(\frac{\alpha'}{\beta'}\right)^{-1}}\right) \varepsilon'_{d,t} + \underbrace{\left(\frac{1}{1 - \frac{\alpha'}{\beta'}}\right)}_{> 0} \varepsilon'_{s,t}$$
$$\Delta w'_{t} = \left(\frac{1/\beta'}{\frac{\alpha'}{\beta'} - 1}\right) \varepsilon'_{d,t} + \underbrace{\left(\frac{1/\beta'}{1 - \frac{\alpha'}{\beta'}}\right)}_{< 0} \varepsilon'_{s,t}$$

• Assuming $\beta' < 0, \alpha' > 0$, we get:

$$\begin{split} 1. \quad & \frac{\partial \Delta h'_t}{\partial \varepsilon_{d,t}^l} > 0 \text{ and } \frac{\partial \Delta h'_t}{\partial \varepsilon_{s,t}^l} > 0 \\ 2. \quad & \frac{\partial \Delta w'_t}{\partial \varepsilon_{d,t}^l} > 0 \text{ and } \frac{\partial \Delta w'_t}{\partial \varepsilon_{s,t}^l} < 0 \end{split}$$

Graphical Illustration

Estimation

Reduced form model

$$\boldsymbol{y}_t^{\prime} = \Phi_0^{\prime} + \Phi^{\prime}(L)\boldsymbol{y}_{t-1}^{\prime} + \boldsymbol{u}_t^{\prime}$$

where

$$\Phi_0^{\prime} = (\mathbf{A}^{\prime})^{-1} \mathbf{B}_0^{\prime}$$

$$\Phi^{\prime}(L) = (\mathbf{A}^{\prime})^{-1} \mathbf{B}^{\prime}(L)$$

$$\mathbf{u}_t^{\prime} = (\mathbf{A}^{\prime})^{-1} \varepsilon_t^{\prime}$$

$$E[\mathbf{u}_t^{\prime}(\mathbf{u}_t^{\prime})^{\prime}] = \Omega = (\mathbf{A}^{\prime})^{-1} \mathbf{D}((\mathbf{A}^{\prime})^{-1})^{\prime}$$

Joint density for prior beliefs over parameter values:

$$p(\boldsymbol{A}, \boldsymbol{D}, \boldsymbol{B}) = p(\boldsymbol{A})p(\boldsymbol{D}|\boldsymbol{A})p(\boldsymbol{B}|\boldsymbol{A}, \boldsymbol{D})$$

Priors (BH (2015, ECTA), BH (2018, JME), BH (2019, AER))

- 1. p(**A**)
 - Encompass estimates from micro & macro lit. (Lichter et al., 2015)

prior for $\alpha' \sim t(0.6, 0.6, 3)$, 90% of mass on [0.1, 2.2] prior for $\beta' \sim t(-0.6, 0.6, 3)$, 90% of mass on [-2.2, -0.1]

- Same prior for all sectors $I \in L$
- 2. $p(\boldsymbol{D}|\boldsymbol{A})$
 - gamma distribution w/ shape $\kappa_i = 2$ and scale τ_i
 - set κ_i/τ_i to match precision of structural shocks from univariate 4-lag autoregs under **A**
- 3. $p(\boldsymbol{B}|\boldsymbol{A},\boldsymbol{D})$
 - set to conform to Minnesota priors (Sims & Zha, 1998) on reduced form coefs. Φ

Posterior given by

$p(\boldsymbol{A}, \boldsymbol{D}, \boldsymbol{B} | \boldsymbol{Y}_{T}) = p(\boldsymbol{A} | \boldsymbol{Y}_{T}) p(\boldsymbol{D} | \boldsymbol{A}, \boldsymbol{Y}_{T}) p(\boldsymbol{B} | \boldsymbol{A}, \boldsymbol{D}, \boldsymbol{Y}_{T})$

- Natural conjugacy:
 - $p(\boldsymbol{B}|\boldsymbol{A},\boldsymbol{D},\boldsymbol{Y}_T)$ follows multivariate normal
 - $p(D|A, Y_T)$ follows gamma distribution
- *p*(*A*|*Y*_T) has no closed form distribution, use Metropolis-Hastings to draw from it

Other estimation details:

• Lag length set at m = 4 based on Akaike IC

Data

- Current Employment Statistics (CES) from the Bureau of Labor Statistics (BLS)
- Monthly data on hours worked and average hourly wages by sector, March 2006-May 2020 (log differences of both hours and wages)
- 14 aggregate sectors, roughly map to NAICS-2 (68 sectors NAICS-3)
- Estimate SVAR until February 2020, use estimated model+data to estimate shocks for March-May 2020 (Lenza and Primiceri (2020))

Estimation Results

All sectors Frable with Result

Shock Decomposition

Shock Decomposition by NAICS-2, March 2020

Shock Decomposition by NAICS-2, March 2020

- Total private: -2.59 pp, supply accounts for 64.8%
- Leisure and Hospitality most negatively affected sector (-9.55, of which 59% supply)
- Least-affected sectors: Wholesale Trade (-0.06 pp), Financial Activities (-0.09 pp), Information (+0.16 pp)
- Positive demand shocks: Information, Retail Trade, Wholesale Trade, Construction
- Very different from March 2019 March 2019

Shock Decomposition by NAICS-3, March 2020

Shock Decomposition by NAICS-2, April 2020

Shock Decomposition by NAICS-2, April 2020

- Combined effect: -16.24 pp, supply accounted for 68.8%
- Leisure and Hospitality most-affected sector (-63.17 pp, of which 63% supply)
- Least-affected sectors: Utilities (+0.09 pp), Financial Activities (-3.06 pp), Information (-8.89 pp)
- Sectors where demand was relevant: Manufacturing (40%), Information (40%), Education and Health Services (45%)
- Sectors not directly exposed to lockdown measures more affected by demand

Shock distributions for April

Shock Decomposition by NAICS-3, April 2020

Lockdown - closed vs. open sectors in April 2020

27 / 37

Shock Decomposition, May 2020

Challenges and Robustness

Empirical Challenges

Large unprecedented shock, may threaten some important assumptions

- 1. Gaussian errors, needed to construct likelihood
- 2. Stationarity of residuals, needed for the Wold decomposition
- 3. Model linearity (structural breaks, non-constant elasticities...)
- (1) and (2) addressed by estimating model up to February 2020
- (3) harder to address; validate shocks w/ external measures

Other challenges:

- 4. Quality of BLS data (Establishment survey was not significantly affected by COVID-19)
- 5. Composition effects
- 6. Labor demand shocks driven by supply shocks of goods and services (e.g. TFP shocks)?

Empirical Challenges

Large unprecedented shock, may threaten some important assumptions

- 1. Gaussian errors, needed to construct likelihood
- 2. Stationarity of residuals, needed for the Wold decomposition
- 3. Model linearity (structural breaks, non-constant elasticities...)
- (1) and (2) addressed by estimating model up to February 2020
- (3) harder to address; validate shocks w/ external measures

Other challenges:

- 4. Quality of BLS data (Establishment survey was not significantly affected by COVID-19)
- 5. Composition effects
- 6. Labor demand shocks driven by supply shocks of goods and services (e.g. TFP shocks)?

Empirical Challenges

Large unprecedented shock, may threaten some important assumptions

- 1. Gaussian errors, needed to construct likelihood
- 2. Stationarity of residuals, needed for the Wold decomposition
- 3. Model linearity (structural breaks, non-constant elasticities...)
- (1) and (2) addressed by estimating model up to February 2020
- (3) harder to address; validate shocks w/ external measures

Other challenges:

- 4. Quality of BLS data (Establishment survey was not significantly affected by COVID-19)
- 5. Composition effects
- 6. Labor demand shocks driven by supply shocks of goods and services (e.g. TFP shocks)?

Telework measure from Dingel & Neiman (2020)

No significant relationship in other months • April 2019

Removing Leisure and Hospitality

- Job losses concentrated in low-paying jobs (i.e., Mongey et al. 2020)
- Negative labor demand shock leading to destruction of low-wage jobs may "look like" a negative supply shock
- Re-estimate VAR on data for "production and non-supervisory" and "supervisory" employees
- Results for "production and non-supervisory" employees change little

Robustness II: composition effects, April 2020

- Use CPS monthly data to check the plausibility of composition effects and demand explaining all the labor dynamics
- We conclude this extremely unlikely as wages would have had to increase by much more

	Clothing Stores	Accommodation	Food & Drink Places
2019 CPS Hourly Earnings	21.16	17.61	14.82
Counterfactual March 2020	21.47	18.55	15.35
$\% \Delta$ March 2020 CF vs. 2019 CPS	+1.45%	+5.29%	+3.59%
% Δ, data	-0.061%	-1.62%	-2.54%
Counterfactual April 2020	65.35	38.28	24.54
$\% \Delta$ April 2020 CF vs. March 2020 CF	+204.43%	+106.39%	+59.80%
% Δ, data	+11.33%	+3.05%	-1.11%

Robustness II: composition effects, April 2020

Robustness III: labor demand shocks \neq TFP shocks, April 2020

Conclusion

- Econometric model of the labor market to decompose supply & demand in March-May 2020
- 2/3 of the fall in hours during March & April 2020 attributable to negative supply shocks
- Contributions:
 - 1. Provide useful moments to calibrate/discipline models
 - 2. Important for the design of public policies (targeted policies, etc.)
- In progress:
 - MSA-level analysis
 - Effects of UI expansion
 - Demand vs. "Keynesian supply shocks" (Guerrieri et al., 2020)

Identification Illustrated

Identification Illustrated

▶ Back

(a) A) Depends on new wage-hours locus

(b) B) Depends on relative labor elasticities

Identification Illustrated - Add Prior

Identification Illustrated - Lockdown

Shock Decomposition, March 2019

Prior and posterior distribution of labor demand and supply elasticities by sector (1/4)

(a) Total Private

(d) Manufacturing

(b) Mining and Logging

(c) Construction

Prior and posterior distribution of labor demand and supply elasticities by sector (2/4)

(a) Wholesale Trade

(c) Transportation and Warehousing

(d) Utilities

Prior and posterior distribution of labor demand and supply elasticities by sector (3/4)

(a) Information

(c) Professional and Business Services

(b) Financial Activities

(d) Education and Health Services

Prior and posterior distribution of labor demand and supply elasticities by sector (4/4)

Back

	β^{l} (demand)			α^{I} (supply)			
Sector	р5	p50	p95	р5	p50	p95	
Mining and Logging	-3.4985	-1.4533	-0.57036	0.51094	1.3784	3.331	
Utilities	-2.7957	-1.0508	-0.2748	0.72259	1.3686	2.6255	
Construction	-14.443	-4.4111	-0.70444	0.45431	2.3951	16.097	
Manufacturing	-3.813	-1.4151	-0.45704	0.8067	1.8056	3.8972	
Wholesale Trade	-1.9119	-0.74404	-0.21297	0.25625	0.73813	1.7147	
Retail Trade	-4.6419	-2.4711	-1.2466	0.32368	1.2577	3.7929	
Transportation and Warehousing	-2.2208	-1.2205	-0.67791	0.2437	0.95951	2.4964	
Information	-2.0643	-0.90012	-0.34388	0.32847	0.92223	2.1588	
Financial Activities	-2.1287	-1.0533	-0.49371	0.26154	0.93418	2.3441	
Professional and Business Services	-2.9516	-1.4611	-0.72686	0.34512	1.1377	2.9259	
Education and Health Services	-2.2529	-1.0778	-0.47521	0.3506	1.0614	2.5915	
Leisure and Hospitality	-4.4276	-1.9899	-0.84574	0.45443	1.4753	4.1884	
Other Services	-2.9106	-1.4046	-0.63227	0.42351	1.193	2.8501	
Total Private	-2.6593	-1.1375	-0.40432	0.53653	1.2244	2.6541	

▶ Back

	Demand			Supply			Difference 68%
							Credible Interval
Sector	50p	2.5p	97.5p	50p	2.5p	97.5p	
Total Private	-5.06	-11.28	-0.31	-11.18	-15.94	-4.97	[-12.204, 0.5492]
Mining and Logging	-4.78	-9.50	-0.84	-7.34	-11.32	-2.62	[-8.076, 2.293]
Construction	-3.65	-12.78	-0.32	-13.47	-16.82	-4.33	[-14.443, -0.375]
Manufacturing	-6.36	-12.93	-1.14	-9.89	-15.13	-3.32	[-10.365, 3.447]
Wholesale Trade	-3.82	-8.23	-0.37	-5.66	-9.10	-1.25	[-6.556, 3.101]
Retail Trade	-3.65	-9.25	-0.04	-10.82	-14.43	-5.23	[-12.276, -0.285]
Transport. & Warehousing	-3.61	-9.06	-0.01	-9.26	-12.85	-3.81	[-9.090, 0.655]
Utilities	1.17	0.41	1.49	-1.08	-1.40	-0.32	[-2.467, -1.416]
Information	-3.51	-6.95	-0.63	-5.39	-8.26	-1.95	[-5.545, 1.967]
Financial Activities	-0.34	-2.00	0.52	-2.72	-3.59	-1.05	[-3.241, -0.610]
Prof. and Business Services	-3.29	-8.05	-0.15	-8.31	-11.44	-3.53	[-9.086, -0.780]
Education and Health	-5.47	-10.77	-0.63	-6.92	-11.76	-1.62	[-8.005, 5.076]
Leisure and Hospitality	-23.26	-46.70	-3.63	-39.92	-59.55	-16.47	[-38.955, 9.722]
Other Services	-6.32	-14.23	-0.48	-15.39	-21.24	-7.47	[-16.701, -0.876]

Back

Estimated Shocks vs. Telework Measure, April 2019

Estimated Shocks vs. Telework Measure, March 2020

Estimated Shocks vs. Telework Measure, May 2020

